#### Space Technology Research Grants

## Ultra-Low Power CMOS-compatible Integrated Photonic Platform for Terabit-Scale Communications



Completed Technology Project (2016 - 2020)

#### **Project Introduction**

Current state-of-the-art free space laser links used for satellite communications are severely limited in speeds primarily due to the high power consumption of the optical transceivers. In this project we exploit recent breakthrough 3D monolithic integration of photonic structures, particularly high-speed graphene-silicon devices on CMOS electronics to create CMOS-compatible high-bandwidth transceivers for ultra-low power Terabit-scale optical communications. The new platform can enable implementation of graphene-silicon structures with unprecedented data modulation speeds, offering an optical space communications infrastructure within a compact power envelope.

#### **Anticipated Benefits**

This new platform can enable implementation of graphene-silicon structures with unprecedented data modulation speeds, offering an optical space communications infrastructure within a compact power envelope.

#### **Primary U.S. Work Locations and Key Partners**





Ultra-Low Power CMOScompatible Integrated Photonic Platform for Terabit-Scale Communications

#### **Table of Contents**

| Project Introduction          | 1 |  |
|-------------------------------|---|--|
| •                             |   |  |
| Anticipated Benefits          | 1 |  |
| Primary U.S. Work Locations   |   |  |
| and Key Partners              | 1 |  |
| Project Website:              | 2 |  |
| Organizational Responsibility |   |  |
| Project Management            | 2 |  |
| Technology Maturity (TRL)     | 2 |  |
| Technology Areas              | 3 |  |
| Target Destination            | 3 |  |



#### **Space Technology Research Grants**

### Ultra-Low Power CMOS-compatible Integrated Photonic Platform for Terabit-Scale Communications



Completed Technology Project (2016 - 2020)

| Organizations<br>Performing Work            | Role                       | Туре           | Location               |
|---------------------------------------------|----------------------------|----------------|------------------------|
| Columbia University in the City of New York | Lead<br>Organization       | Academia       | New York,<br>New York  |
| Goddard Space Flight Center(GSFC)           | Supporting<br>Organization | NASA<br>Center | Greenbelt,<br>Maryland |

#### **Primary U.S. Work Locations**

New York

#### **Project Website:**

https://www.nasa.gov/strg#.VQb6T0jJzyE

### Organizational Responsibility

### Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Columbia University in the City of New York

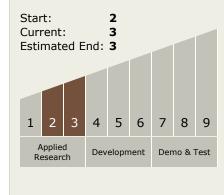
#### **Responsible Program:**

Space Technology Research Grants

#### **Project Management**

#### **Program Director:**

Claudia M Meyer


#### **Program Manager:**

Hung D Nguyen

#### **Principal Investigator:**

Keren Bergman

# Technology Maturity (TRL)





**Space Technology Research Grants** 

## Ultra-Low Power CMOS-compatible Integrated Photonic Platform for Terabit-Scale Communications



Completed Technology Project (2016 - 2020)

#### **Technology Areas**

#### **Primary:**

### Target Destination Earth

